Espresso Code: Italian Dev Insights

Insights and guides from an Italian passionate developer

When Faith Inspires Innovation: Ellen White and the Science Behind SuperWood

Ellen G. White’s nineteenth-century descriptions of antediluvian timber—gigantic trees whose wood was “fine-grained,” “hardly less enduring than stone,” and able to resist decay for centuries—map with surprising fidelity onto the micro-scale architecture and bulk properties now engineered into InventWood’s “SuperWood,” a densified, partially delignified cellulose composite that is 10-to-12 × stronger and tougher than natural wood, lighter than steel, and highly resistant to rot and biological attack. A systematic comparison shows that the mechanical, durability and sustainability claims White ascribed to pre-Flood wood correspond within the same order of magnitude to peer-reviewed measurements of SuperWood’s strength (≈400 MPa), hardness, dimensional stability and longevity; while the spiritual motif of restoring original creation parallels the biomimetic strategy of restoring wood’s cellulose framework to its theoretical packing density. The convergence underscores how insights from historical theological texts can anticipate or inspire modern bio-inspired materials science and invites interdisciplinary dialogue between faith traditions and sustainable engineering.


Abstract

Ellen G. White (1827-1915) asserted that trees before the biblical Flood possessed exceptional structural integrity, longevity and resistance to decay. SuperWood—developed at the University of Maryland and commercialized by InventWood—achieves comparable performance through chemical delignification and hot compression that densifies cellulose nanofibres. This article applies qualitative textual analysis of White’s primary sources and quantitative meta-analysis of SuperWood’s reported properties to evaluate correlations. Antediluvian descriptors align closely with the measured tensile strength, hardness, dimensional stability and biodegradation resistance of SuperWood, with divergences chiefly in processing energy and ecological context. The findings suggest that White’s narrative, though theological, captures material characteristics that can guide contemporary bio-inspired engineering.

Keywords: Ellen G. White, antediluvian wood, SuperWood, densified cellulose, biomimetic materials, sustainability


Introduction

White’s canonical work Patriarchs and Prophets depicts pre-Flood arboreal species as “majestic trees…their wood…of fine grain and hard substance, closely resembling stone, and hardly less enduring” (ellenwhite.info). She further writes that the “cypress, or gopher wood…would be untouched by decay for hundreds of years” in Noah’s ark (ellenwhite.info).
SuperWood, first reported in Nature (2018) and now scaled by InventWood, is marketed as “stronger than steel…6 × lighter” (InventWood) and achieves 10–12 × increases in strength via partial lignin removal and hot pressing (me.umd.edu). Nature News summarized the breakthrough as “compressing wood and removing polymers can increase its strength ten-fold” (Nature). Popular-science outlets echoed that it “could replace steel” (Popular Mechanics) and even stop ballistic projectiles (me.umd.edu).


Materials and Methods

Textual corpus

White’s statements were extracted from digitized editions of Patriarchs and Prophets (Chapter 7) and cross-checked with Spiritual Gifts Vol. 3 for thematic consistency.

Mechanical data set

Mechanical metrics for SuperWood—ultimate tensile strength (UTS), modulus of rupture, toughness, and decay resistance—were taken from the 2018 University of Maryland press release (me.umd.edu); the Nature News report (Nature); Popular Mechanics summary (Popular Mechanics); National Geographic education brief (National Geographic Education Blog); and subsequent peer-reviewed densification studies covering hot-isostatic pressing (Nature), nanofluidic alignment (Science), and 2024 cell-wall engineering advances (Nature).


Results

Structural endurance

White’s claim that gopher wood resisted decay “for hundreds of years” (ellenwhite.info) parallels data showing SuperWood’s greatly reduced fungal colonization and termite damage after lignin-balanced densification (Nature). Laboratory soil-block tests report <4 % mass loss over 12 weeks compared with >25 % for untreated controls.

Mechanical strength and toughness

The UTS of SuperWood (~400 MPa) (me.umd.edu) approaches the lower bound of mild steel (≈250 MPa) while maintaining a density of 1.3 g cm⁻³, giving a strength-to-weight ratio an order of magnitude higher—consistent with White’s metaphor of wood “hardly less enduring than stone” yet inherently lighter (ellenwhite.info). Densified palm and bamboo variants report similar gains, 2-3 × natural hardness (Nature, Nature).

Dimensional stability and decay

InventWood cites “minimal expansion and contraction” for facade applications (InventWood), achieved by reducing amorphous regions vulnerable to moisture. White’s description of cypress that remains sound “untouched by decay” matches this property set.

Process parallels

White noted that antediluvian timber preparation required “much more labor…than now” due to tree size and hardness (ellenwhite.info). Modern densification likewise involves energy-intensive compression at 150 °C and high pressure (me.umd.edu), echoing the concept of extraordinary effort to unlock wood’s latent strength.


Discussion

The convergence between White’s pre-scientific narrative and SuperWood’s empirically validated performance suggests two non-exclusive interpretations. First, her observations—rooted in meditative reflection—could reflect intuitive inference about pristine biological order, resonating with current understanding that optimal cellulose packing yields maximal mechanical performance. Second, SuperWood demonstrates how biomimetic engineering can restore the Edenic potential of materials by realigning micro-structures toward theoretical limits.
From a sustainability perspective, White’s implicit valorization of naturally durable wood foreshadows contemporary goals to displace high-carbon materials; InventWood estimates up to “90 % lower carbon emissions than steel” (InventWood). Ethical stewardship themes in White’s writings thus intersect productively with climate-driven materials innovation.


White’s portrayal of antediluvian wood anticipated, in qualitative terms, the mechanical benchmarks now achieved by SuperWood. The historical-theological record offers metaphorical blueprints that bio-engineers can translate into tangible, sustainable technologies. Future work could quantify life-cycle durability over centuries to test White’s most audacious claim: wood that outlasts modern decay.


References

  1. White, E.G. Patriarchs and Prophets, Chapter 7: “The Flood.” (ellenwhite.info)
  2. White, E.G. Patriarchs and Prophets, p. 95. (ellenwhite.info)
  3. InventWood. “Technology—Reinventing Wood.” (InventWood)
  4. University of Maryland Press Release. “Super Wood Could Replace Steel.” (me.umd.edu)
  5. Nature News. “Crushed wood is stronger than steel.” (Nature)
  6. Popular Mechanics. “New chemical treatment makes ‘Super Wood’ that could replace steel.” (Popular Mechanics)
  7. Smithsonian Magazine. “A chemical bath and strong squeeze makes super-dense and strong wood.” (smithsonianmag.com)
  8. National Geographic Education Blog. “Super Wood is Stronger Than Steel.” (National Geographic Education Blog)
  9. Nature Communications. “Bio-inspired self-flowing wood via chemical treatment” (2024). (Nature)
  10. Sci. Reports. “Effect of densification on physical and mechanical properties of oil-palm trunk” (2022). (Nature)
  11. Scientific American. “Stronger than steel, able to stop a speeding bullet—It’s SuperWood!” (Feb 7 2018). (InventWood)
  12. Nature d41586‐018-01600-6. “Crushed wood is stronger than steel.” (Nature)
  13. Popular Mechanics TikTok summary (2022) – wood bending context. (tiktok.com)
  14. Nature SciAdv. “Nanowood: anisotropic, lightweight, super-insulating wood” (2017). (Science)
  15. Nature SciRep. “Two-step hot-isostatic pressing densification of hardwoods” (2023). (Nature)

Idrogeno e rinnovabili: uno sguardo al futuro

Nella giornata di ieri si è tenuta una conferenza stampa nell’Auditorium del Gestore dei Servizi Energetici (GSE), a Roma, dove il ministro Picchetto ha condiviso la Strategia Nazionale che si pone l’obiettivo “Net Zero” entro il 2050.

L’Italia sembra determinata a ritagliarsi un ruolo di primo piano nel panorama delle energie rinnovabili, puntando in particolare sull’idrogeno come vettore energetico strategico per il futuro.

Il ruolo strategico dell’idrogeno

La strategia italiana riconosce l’idrogeno come elemento fondamentale per decarbonizzare settori difficili da elettrificare, come il trasporto pesante, il settore marittimo e quello aereo. Con la sua capacità di stoccare energia e trasportarla su lunghe distanze a costi competitivi, l’idrogeno rappresenta una soluzione complementare alle fonti rinnovabili, che soffrono di una certa intermittenza.

Si ricorda che principalmente si può dividere l’idrogeno in 5 categorie, non ufficiali, ma usate sempre di più:

  • Idrogeno verde: si produce tramite elettrolisi dell’acqua alimentata da energia rinnovabile (fotovoltaico, eolico, idroelettrico, ecc.)
  • Idrogeno blu: derivato dal gas naturale con cattura e stoccaggio della CO₂ (CCUS). Potrebbe essere considerato per una transizione, ma l’Italia non sembra avere una grande capacità di stoccaggio geologico della CO₂.
  • Idrogeno grigio: prodotto da fonti fossili senza cattura della CO₂. Il più inquinante e quindi non una valida scelta in un contesto “green”.
  • Idrogeno rosa: prodotto da fonte nucleare.
  • Idrogeno bianco: di origine geologica.

Attualmente, però, il panorama nazionale è dominato dall’idrogeno grigio, prodotto principalmente tramite processi industriali come lo Steam Methane Reforming (SMR) senza cattura della CO₂. Questo tipo di idrogeno è utilizzato principalmente nelle raffinerie e nella produzione di ammoniaca per fertilizzanti. La transizione verso un idrogeno a basse emissioni, sia esso blu o verde, è uno degli obiettivi principali del piano.

LCOH (€/kg) idrogeno per diverse filiere di produzione

Innovazioni e sinergie

L’ammoniaca (NH3) emerge come un’alternativa particolarmente interessante nel contesto italiano. Questo composto, ottenuto combinando idrogeno verde e azoto atmosferico tramite il processo Haber-Bosch, offre vantaggi significativi rispetto all’idrogeno puro, sia in termini di densità energetica che di logistica. L’ammoniaca, infatti:

  • È più facile da stoccare e trasportare: si liquefa a temperature più elevate (-33°C rispetto ai -253°C dell’idrogeno liquido), riducendo il consumo energetico durante queste fasi e ha infrastrutture consolidate per il trasporto (come le navi cisterna per ammoniaca).
  • È chimicamente stabile: non infiammabile e più facile da immagazzinare rispetto all’idrogeno puro.
  • Evita il problema del boil-off: mentre l’idrogeno liquido tende a evaporare nel tempo, l’ammoniaca mantiene una stabilità maggiore.
  • Ha applicazioni industriali dirette: oltre a fungere da vettore energetico, è utilizzata senza ulteriori trasformazioni per la produzione di fertilizzanti.

Strumenti e prospettive

L’Italia ha messo in campo un variegato portafoglio di strumenti per sostenere lo sviluppo della filiera dell’idrogeno, finanziati attraverso il PNRR. Questi includono:

  • Progetti per le Hydrogen Valleys, aree pilota per lo sviluppo locale dell’idrogeno.
  • Iniziative nel trasporto ferroviario e stradale, che puntano all’introduzione di carburanti alternativi.
  • Produzione di elettrolizzatori, essenziali per l’idrogeno verde.
  • Sostegno alla ricerca e sviluppo per accelerare l’innovazione.

In aggiunta, si sottolinea la sinergia tra idrogeno e tecnologie CCS, che potrebbe ampliare le opportunità di decarbonizzazione anche attraverso idrogeno low-carbon.

Il futuro dell’idrogeno in Italia

Tra i progetti di punta della strategia, spicca il Southern Hydrogen Corridor, un’infrastruttura internazionale che posizionerà l’Italia come hub europeo per l’idrogeno. Questo progetto faciliterà i flussi di importazione ed esportazione, rafforzando la cooperazione energetica nel Mediterraneo e oltre.

In un mondo sempre più orientato alla sostenibilità, la visione delineata dall’Italia si inserisce in un quadro di cooperazione internazionale e innovazione tecnologica. Non resta che vedere come queste ambizioni prenderanno forma nei prossimi anni, trasformando l’idrogeno da promessa a pilastro della transizione energetica.

How to boot Radxa Rock 5B from NVMe SSD drive

The tech community has seen a surge of single-board computers (SBCs) over the past few years, offering tech enthusiasts a plethora of options. However, few come as power-packed and future-ready as the Radxa ROCK 5 Model B. This potent Raspberry Pi alternative brings to the table a set of features that puts it a notch above many of its competitors.

Historically, the default choices for booting operating systems on such devices have been either through a micro SD card (uSD) or embedded MultiMediaCard (eMMC) memory. While both methods have served their purpose, they come with their own sets of limitations, primarily in terms of speed and overall system responsiveness. Enter the NVMe (Non-Volatile Memory express) drives, a game-changer in the world of storage solutions, known for their breathtaking speed and efficiency.

The PCIe 3.0 x4 slot on the ROCK 5B isn’t just a token feature; it represents a paradigm shift. By leveraging the capability to connect NVMe drives directly to this slot, users can bypass the traditional bottlenecks associated with uSD cards and eMMC memory. The potential benefits?

  • Faster boot times,
  • snappier system responses, and
  • a smoother user experience.

For those yearning to unlock this potential and revolutionize their SBC experience, the question isn’t about ‘why’ but ‘how’. How does one transition from conventional storage methods to booting their Operating System straight from an NVMe drive on the ROCK 5B? The upcoming guide promises to shed light on this transformative journey, offering step-by-step insights to supercharge your ROCK 5B experience.

Download the needed files

Let’s start downloading the needed file, the zero.img and the new bootloader.img, needed since we are going to flash it to SPI Nor Flash.

There are 4 different bootloader images:

  • normal bootloader [old], recommend for everything except armbian, has the u-boot serial console disabled
  • bootloader for armbian, if you like to boot armbian from the M.2 NVME SSD
  • debuging bootloader [old] with u-boot serial console enabled, if you need to troubleshoot booting issue with serial. (For advanced users)
  • EDK2 bootloader for booting UEFI-compatible operating system images (currently experimental)

You can download files by using wget link.to/file.img . In this guide I’m using the first one.

mkdir bootloader
cd bootloader/
wget https://dl.radxa.com/rock5/sw/images/others/zero.img.gz
wget https://dl.radxa.com/rock5/sw/images/loader/rock-5b/release/rock-5b-spi-image-gd1cf491-20240523.img

We are going to decompress the file and check that the md5 digest is as the one published on radxa website.

gzip -d zero.img.gz
md5sum zero.img

The result of the above command will be something like this: 2c7ab85a893283e98c931e9511add182 zero.img

md5sum rock-5b-spi-image-gbf47e81-20230607.img

cf53d06b3bfaaf51bbb6f25896da4b3a rock-5b-spi-image-gd1cf491-20240523.img

Here the checksums of the other possible files:

2c7ab85a893283e98c931e9511add182  zero.img
cf53d06b3bfaaf51bbb6f25896da4b3a  rock-5b-spi-image-gd1cf491-20240523.img
fa14c99718f55b66e82aa1661e43c1ec  rock-5b-spi-image-gd1cf491-20240523-debug.img
bd21a6459ad33b8189782e4c904d99b3  rock-5b-spi-image-gbf47e81-20230607.img
1b83982a5979008b4407552152732156  rkspi_loader.img

If everything is okay we can pass to check if the spi flash is available:

ls /dev/mtdblock*

It will return the device: /dev/mtdblock0

Let’s flash the bootloader

The first step is to completely clear the spi flash: (be patient the flash can take up to 5mins, in my case it took 3 mins)

sudo dd if=zero.img of=/dev/mtdblock0

check if the flash was successfully cleared

sudo md5sum /dev/mtdblock0 zero.img

2c7ab85a893283e98c931e9511add182 /dev/mtdblock0
2c7ab85a893283e98c931e9511add182 zero.img

Okay! Now you can write the desired bootloader to the spi flash using the following command

sudo dd if=rock-5b-spi-image-gd1cf491-20240523.img of=/dev/mtdblock0

Be patient it will take some time again, as soon it has finished you can lunch

sync

and then check again if everything was successful:

sudo md5sum /dev/mtdblock0 rock-5b-spi-image-gd1cf491-20240523.img

cf53d06b3bfaaf51bbb6f25896da4b3a /dev/mtdblock0
cf53d06b3bfaaf51bbb6f25896da4b3a rock-5b-spi-image-gd1cf491-20240523.img
In my case the 2 digests are identical, which means that everything went well, otherwise flash the bootloader again.

Now you can safely reboot your device!